กระบวนการสังเคราะห์ด้วยแสง (ชีววิทยา)

Posted: March 5, 2012 in Uncategorized

กระบวนการสังเคราะห์ด้วยแสง

12

สิ่งมีชีวิตทุกชนิด

ต้องการอาหารและพลังงาน เพื่อใช้ในการดำรงชีวิต สิ่งมีชีวิตบางชนิดสามารถสร้างอาหารได้เองจากสารประกอบอนินทรีย์โดยใช้พลังงานจากดวงอาทิตย์ เรียก กระบวนการสังเคราะห์ด้วยแสง

กระบวนการสังเคราะห์ด้วยแสง [ Photosynthesis]

เป็นกระบวนการที่ประกอบด้วยปฏิกิริยาเคมีที่เกิดขึ้นอย่างต่อเนื่องกันเป็นลำดับที่ชั้นพาลิเสดเซลล์ของพืชโดยใช้พลังงานจากแสงอาทิตย์ที่คลอโรพลาสต์ในเซลล์พืชรับมาเปลี่ยนก๊าซคาร์บอนไดออกไซด์และไฮโดรเจนจากน้ำหรือแหล่งไฮโดรเจนอื่น ๆ ให้กลายเป็นสารประกอบประเภทคาร์โบไฮเดรทและมีก๊าซออกซิเจนเกิดขึ้น

กระบวนการสังเคราะห์ด้วยแสง

และการหายใจในเซลล์จะทำงานร่วมกันอย่าง สมดุลโดยกระบวนการหายใจจะสลายอาหารได้ พลังงาน และก๊าซคาร์บอนไดออกไซด์ กระบวนการสังเคราะห์ด้วยแสงจะสร้างคาร์โบไฮเดรท และมีก๊าซออกซิเจนเกิดขึ้นเป็นวัฎจักร

13

การสังเคราะห์ด้วยแสงจะเกิดขึ้นในมหาสมุทร

มากที่สุดประมาณ85 %โดยเฉพาะอย่างยิ่งไดอะตอมเป็นสิ่งมีชีวิตที่มีการสังเคราะห์ด้วยแสงเกิดขึ้นมากที่สุดการสังเคราะห์ด้วยแสงของสิ่งมีชีวิตบนพื้นดินมีประมาณ10% และแหล่งน้ำจืด 5% ตามลำดับ

คลอโรพลาสต์ [ Chloroplast ]

เป็นออร์แกเนลล์ชนิดหนึ่งในเซลล์พืช ภายในคลอโรพลาสต์มีคลอโรฟิลล์เป็นองค์ประกอบ ซึ่งสามารถดูดกลืนพลังงานจาก ดวงอาทิตย์ มาใช้ในกระบวนการสังเคราะห์ด้วยแสง คลอโรพลาสต์ในพืชชั้นสูงจะมีลักษณะเป็นรูปไข่หรือกลมรีขนาดยาวประมาณ 5 ไมครอน กว้าง 2 ไมครอน หนา 1-2 ไมครอน มีเยื่อหุ้ม 2 ชั้น ภายในประกอบด้วยส่วนสำคัญ 2 ส่วนคือ Stroma และ Lamella

• สโตรมา (Stroma) เป็นของเหลวใส มีเอนไซม์หลายชนิดที่นำไปใช้ในปฏิกิริยาที่ไม่ต้องใช้แสง

• ลาเมลลา เป็นส่วนหนึ่งของเยื่อหุ้มชั้นในที่ยื่นเข้าไปในคลอโรพลาสต์

14

มีลักษณะเป็นแผ่นบาง ๆ ซ้อนกัน

ประกอบด้วยโปรตีน ไขมัน คลอโรฟิลล์และรงควัตถุ แผ่นลาเมลลาซ้อนกันหลาย ๆ ชั้นเรียกว่า กรานา (Grana) แผ่นลาเมลลาแต่ละแผ่นที่ซ้อนอยู่ในกรานาเรียกว่า ไทลาคอยด์ (Thylakoid ) เป็นแหล่งรับพลังงานจากแสง ซึ่งประกอบด้วยกลุ่มของรงควัตถุระบบ 1 และรงควัตถุระบบ 2 มีชื่อเรียกว่า ควอนตาโซม ( Quantasome)

• รงควัตถุคือ สารที่สามารถดูดกลืนแสง รงควัตถุแต่ละชนิดจะดูดกลืนแสงสะท้อนสีต่างกัน

• คลอโรฟิลล์ เป็นรงควัตถุที่พบในใบไม้สามารถดูดกลืนแสงสี ม่วง น้ำเงิน แดงได้แต่สะท้อนแสงสีเขียว จึงทำให้เราเห็นใบไม้เป็นสีเขียว

[แก้] ปัจจัย ที่เกี่ยวข้องกับการสังเคราะห์ด้วยแสง
ความเข้มของแสง
ถ้ามีความเข้มของแสงมาก อัตราการสังเคราะห์ด้วยแสงจะเพิ่มขึ้นเรื่อยๆ ดังกราฟ อุณหภูมิกับความเข้มของแสง มีผลต่ออัตราการสังเคราะห์ด้วยแสงร่วมกัน คือ ถ้าอุณหภูมิสูงขึ้นเพียงอย่างเดียว แต่ความเข้มของแสงน้อยจะไม่ทำให้อัตราการสังเคราะห์ด้วยแสงเพิ่มขึ้น อัตราการสังเคราะห์ด้วยแสงจะเพิ่มขึ้นเรื่อยๆ จนถึงขีดหนึ่งแล้วอัตราการสังเคราะห์ด้วยแสงจะลดต่ำลงตามอุณหภูมิและความเข้มของแสงที่เพิ่มขึ้นและยังขึ้นอยู่กับชนิดของพืชอีกด้วยเช่น พืช c3และ พืช c4
โดยปกติ ถ้าไม่คิดถึงปัจจัยอื่นๆ เข้ามาเกี่ยวข้องด้วย อัตราการสังเคราะห์ด้วยแสงของพืชส่วนใหญ่จะเพิ่มมากขึ้น เมื่ออุณหภูมิสูงขึ้นในช่วง 0-35 °C หรือ 0-40 °C ถ้าอุณหภูมิสูงกว่านี้ อัตราการสังเคราะห์ด้วยแสงจะลดลง ทั้งนี้เนื่องจากกระบวนการสังเคราะห์ด้วยแสงเป็นปฏิกิริยาที่มีเอนไซม์ควบคุม และการทำงานของเอนไซม์ขึ้นอยู่กับอุณหภูมิ ดังนั้น เรื่องของอุณหภูมิจึงมีความสัมพันธ์กับอัตราการสังเคราะห์ด้วยแสง เรียกปฏิกิริยาเคมีที่มีความสัมพันธ์กับอุณหภูมิว่า ปฏิกิริยาเทอร์โมเคมิคัล
ถ้าความเข้มของแสงน้อยมาก จนทำให้การสังเคราะห์ด้วยแสงของพืชเกิดขึ้นน้อยกว่ากระบวนการหายใจ น้ำตาลถูกใช้หมดไป พืชจะไม่สามารถมีชีวิตอยู่ได้ อัตราการสังเคราะห์ด้วยแสงของพืชไม่ได้ ขึ้นอยู่กับความเข้มของแสงเท่านั้น แต่ยังขึ้นอยู่กับความยาวคลื่น (คุณภาพ) ของแสง และช่วงเวลาที่ได้รับ เช่น ถ้าพืชได้รับแสงนานจะมีกระบวนการสังเคราะห์ด้วยแสงดีขึ้น แต่ถ้าพืชได้แสงที่มีความเข้มมากๆ ในเวลานานเกินไป จะทำให้กระบวนการสังเคราะห์ด้วยแสงชะงัก หรือหยุดลงได้ทั้งนี้เพราะคลอโรฟิลล์ถูกกระตุ้นมากเกินไป ออกซิเจนที่เกิดขึ้นแทนที่จะออกสู่บรรยากาศภายนอก พืชกลับนำไปออกซิไดส์ส่วนประกอบและสารอาหารต่างๆภายในเซลล์ รวมทั้งคลอฟิลล์ทำให้สีของคลอโรฟิลล์จางลง ประสิทธิภาพของคลอโรฟิลล์และเอนไซม์เสื่อมลง ทำให้การสร้างน้ำตาลลดลง
ความเข้มข้นของคาร์บอนไดออกไซด์
ถ้าความเข้มข้นของคาร์บอนไดออกไซด์ (CO2) เพิ่มขึ้นจากระดับปกติที่มีในอากาศ อัตราการสังเคราะห์ด้วยแสงจะเพิ่มสูงขึ้นตามไปด้วย จนถึงระดับหนึ่งถึงแม้ว่าความเข้มข้นของคาร์บอนไดออกไซด์จะสูงขึ้น แต่อัตราการสังเคราะห์ด้วยแสงไม่ได้สูงขึ้นตามไปด้วย และถ้าหากว่าพืชได้รับคาร์บอนไดออกไซด์ ที่มีความเข้มข้นสูงกว่าระดับน้ำแล้วเป็นเวลานานๆ จะมีผลทำให้อัตราการสังเคราะห์ด้วยแสงลดต่ำลงได้ ดังกราฟ
คาร์บอนไดออกไซด์จะมีผลต่ออัตราการสังเคราะห์ด้วยแสงมากน้อยแค่ไหนขึ้นอยู่กับปัจจัยอื่นด้วย เช่น ความเข้มข้นสูงขึ้น แต่ความเข้มของแสงน้อย และอุณหภูมิของอากาศก็ต่ำ กรณีเช่นนี้ อัตราการสังเคราะห์ด้วยแสงจะลดต่ำลงตามไปด้วย ในทางตรงกันข้าม ถ้าคาร์บอนไดออกไซด์มีความเข้มข้นสูงขึ้น ความเข้มของแสงและอุณหภูมิของอากาศก็เพิ่มขึ้น กรณีเช่นนี้อัตราการสังเคราะห์ด้วยแสงก็จะสูงขึ้นตามไปด้วย
นักชีววิทยาจึงมักเลี้ยงพืชบางชนิดไว้ในเรือนกระจกที่แสงผ่านเข้าได้มากๆ แล้วให้ คาร์บอนไดออกไซด์มากขึ้นเป็นพิเศษ ซึ่งมีผลทำให้พืชมีกระบวนการสังเคราะห์ด้วยแสงเพิ่มมากขึ้น อาหารเกิดมากขึ้น จึงเจริญเติบโตอย่างรวดเร็ว ออกดอกออกผลเร็ว และออกดอกออกผลนอกฤดูกาลก็ได้
อุณหภูมิ
อุณหภูมิ เป็นปัจจัยอย่างหนึ่งที่มีอิทธิพลต่อการสังเคราะห์ด้วยแสงของพืช โดยทั่วไปอัตราการสังเคราะห์ด้วยแสงจะเพิ่มขึ้นเรื่อยๆ เมื่ออุณหภูมิสูงขึ้น 10-35 °C ถ้าอุณหภูมิสูงขึ้นกว่านี้อัตราการสังเคราะห์ด้วยแสงจะลดต่ำลงตามอุณหภูมิที่เพิ่มขึ้น อัตราการสังเคราะห์ด้วยแสงที่อุณหภูมิสูงๆ ยังขึ้นอยู่กับเวลาอีกปัจจัยหนึ่งด้วย กล่าวคือ ถ้าอุณหภูมิสูงคงที่ เช่น ที่ 40 °C อัตราการสังเคราะห์ด้วยแสงจะลดลงตามระยะเวลาที่เพิ่มขึ้น ทั้งนี้เพราะเอนไซม์ทำงานได้ดีในช่วงอุณหภูมิที่พอเหมาะ ถ้าสูงเกิน 40 °C เอนไซม์จะเสื่อมสภาพทำให้การทำงานของเอนไซม์ชะงักลง ดังนั้นอุณหภูมิจึงมีความสัมพันธ์ต่อการสังเคราะห์แสงด้วย เรียกปฏิกิริยาเคมีที่มีความสัมพันธ์กับอุณหภูมิว่า ปฏิกิริยาเทอร์มอเคมิคอล (Thermochemical reaction)
ออกซิเจน
ตามปกติในอากาศจะมีปริมาณของออกซิเจน (O2) ประมาณ 25% ซึ่งมักคงที่อยู่แล้ว จึงไม่ค่อยมีผลต่อการสังเคราะห์ด้วยแสง แต่ถ้าปริมาณออกซิเจนลดลงจะมีผลทำให้อัตราการสังเคราะห์ด้วยแสงสูงขึ้น แต่ถ้ามีมากเกินไปจะทำให้เกิดปฏิกิริยาออกซิเดชัน ของสารต่างๆ ภายในเซลล์ โดยเป็นผลจากพลังงานแสง (Photorespiration) รุนแรงขึ้น การสังเคราะห์ด้วยแสงจึงลดลง
น้ำ
น้ำ ถือเป็นวัตถุดิบที่จำเป็นต่อกระบวนการสังเคราะห์ด้วยแสง (แต่ต้องการประมาณ 1% เท่านั้น จึงไม่สำคัญมากนักเพราะพืชมีน้ำอยู่ภายในเซลล์อย่างเพียงพอ) อิทธิพลของน้ำมีผลต่อกระบวนการสังเคราะห์ด้วยแสงทางอ้อม คือ ช่วยกระตุ้นการทำงานของเอนไซม์
เกลือแร่
ธาตุแมกนีเซียม (Mg) , และไนโตรเจน (N) ของเกลือในดิน มีความสำคัญต่ออัตราการสังเคราะห์ด้วยแสง เพราะธาตุดังกล่าวเป็นองค์ประกอบอยู่ในโมเลกุลของคลอโรฟิลล์ ดังนั้น ถ้าในดินขาดธาตุทั้งสอง พืชก็จะขาดคลอโรฟิลล์ ทำให้การสังเคราะห์ด้วยแสงลดลงด้วย นอกจากนี้ยังพบว่าเหล็ก (Fe) จำเป็นต่อการสร้างคลอโรฟิลล์ และสารไซโตโครม (ตัวรับและถ่ายทอดอิเล็กตรอน) ถ้าไม่มีธาตุเหล็กในดินเพียงพอ การสังเคราะห์คลอโรฟิลล์ก็จะเกิดขึ้นไม่ได้และ ฟอสฟอรัสอีกด้วย
อายุของใบ
ใบจะต้องไม่แก่หรืออ่อนจนเกินไป ทั้งนี้เพราะในใบอ่อนคลอโรฟิลล์ยังเจริญไม่เต็มที่ ส่วนใบที่แก่มากๆ คลอโรฟิลล์จะสลายตัวไปเป็นจำนวนมาก
สมการเคมีในการสังเคราะห์ด้วยแสงเป็นดังนี้
สรุปสมการเคมีในการสังเคราะห์ด้วยแสงของพืชสีเขียวเป็นดังนี้ :
nCO2 + 2nH2O + พลังงานแสง → (CH2O) n + nO2 + nH2O
เฮกโซส น้ำตาล และ แป้ง เป็นผลผลิตขั้นต้นดังสมการดังต่อไปนี้:
6CO2 + 12H2O + พลังงานแสง → C6H12O6 + 6O2 + 6H2O

การสังเคราะห์ด้วยแสง
ก็ได้ทราบกันอยู่แล้วว่าว่าพืชมีหน้าที่สำคัญอย่างหนึ่งคือ  สามารถนำพลังงานแสงมาตรึงคาร์บอนไดออกไซด์
์และสร้างเป็นอาหารเก็บไว้ในรูปสารอินทรีย์ โดยกระบวนการสังเคราะห์ด้วยแสง  นอกจานี้ยังทราบอีกว่าในใบพืช
มีคลอโรฟิลล์  ซึ่งจำเป็นต่อการสังเคราะห์ด้วยแสง  และผลผลิตที่ได้คือ  คาร์โบไฮเดรต น้ำ และออกซิเจน
และยังได้ทราบว่าพืชมีโครงสร้างที่เหมาะสมต่อการทำงานได้อย่างไร
กระบวนการสังเคราะห์ด้วยแสง
กระบวนการสังเคราะห์ด้วยแสงของพืช แบ่งเป็น 2 ขั้นตอนใหญ่ คือ
ปฏิกิริยาแสงและปฏิกิริยาตรึงคาร์บอนไดออกไซด์
โครงสร้างของคลอโรพลาสต์

จากการที่ศึกษาด้วยการใช้กล้องจุลทรรศน์อิเล็กตอนและเทคนิคต่างๆ  ทำให้เราทราบรายละเอียดเกี่ยวกับ
โครงสร้างและหน้าที่ของคลอโรพลาสต์มากขึ้น  คลอโรพลาสต์ส่วนใหญ่ของพืชจะมีรูปร่างกลมรี   มีความยาวประมาณ
5 ไมโครเมตร  กว้าง 2ไมโครเมตร หนา1-2 ไมโครเมตร  ในเซลล์ของแต่ละใบจะมีคลอโรพลาสต์มากน้อย
แตกต่างกันไปขึ้นอยู่กับชนิดของเซลล์และชนิดของพืช

15

คลอโรพลาสต์ ประกอบด้วยเยื่อหุ้ม 2 ชั้น ภายในมีของเหลวเรียกว่า สโตรมา  มีเอนไซม์ที่จำเป็นสำหรับ
กระบวนการตรึงคาร์บอนไดออกไซด์ในการสังเคราะห์ด้วยแสงนอกจากนี้ด้านในของคลอโรพลาสต์
ยังมีเยื่อไทลาคอยด์   ส่วนที่พับทับซ้อนไปมาเรียกว่า กรานุม  และส่วนที่ไม่ทับซ้อนกันอยู่เรียกว่า
สโตรมาลาเมลลา สารสีทั้งหมดและคลอโรฟิลล์จะอยู่บนเยื่อไทลาคอยด์มีช่องเรียก ลูเมน ซึ่งมีของเหลวอยู่ภายใน

นอกจากนี้ภายในคลอโรพลาสต์ยังมี DNA RNA และไรโบโซมอยู่ด้วย  ทำให้คลอโรพลาสต์สามารถ
จำลองตัวเองขึ้นมาใหม่และผลิตเอนไซม์ไว้ใช้ในคลอโรพลาสต์ในคลอโรพลาสต์เองได้คล้ายกับไมโทคอนเดรีย
สารสีในปฏิกิริยาแสง
เราสามารถพบได้ว่าสาหร่ายสไปโรไจราสังเคราะห์ด้วยแสงได้ดีที่แสงสีน้ำเงินและแสงสีแดง
สารสีที่พบในสิ่งมีชีวิตที่สังเคราะห์แสงมีได้หลายชนิด   พืชและสาหร่ายซึ่งเป็นสิ่งมีชีวิตประเภทยูคาริโอต
สารสีต่างๆจะอยู่ในคลอโรพลาสต์  แต่ไซยาโนแบคทีเรียและกรีนแบคทีเรียจะพบสารสีต่างๆ  และศูนย์กลาง
ปฏิกิริยาแสงแทรกอยู่ในเยื่อหุ้มเซลล์ หรือองค์ประกอบอื่นที่เปลี่ยนแปลงมาจากเยื่อหุ้มเซลล์
โดยมีส่วนของเยื่อหุ้มเซลล์ที่ยื่นเข้าไปในไซไทพลาซึมทำหน้าที่แทนเยื่อชั้นในของคลอโรพลาสต์
สิ่งมีชีวิตแต่ละชนิดที่สังเคราะห์แสงได้  มีสารสีอยู่หลายประเภท ซึ่งเราได้พบว่า  พืชและสาหร่ายสีเขียว
มีคลอโรฟิลล์ 2 ชนิด คือ  คลอโรฟิลล์ เอ และคลอโรฟิลล์ บี  นอกจากคลอโรฟิลล์แล้วยังมีแคโรทีนอยด์
และพบว่าสาหร่ายบางชนิดมี ไฟโคบิลิน
แคโรทีนอยด์เป็นสารประกอบประเภทไขมัน  ซึ่งประกอบไปด้วยสาร 2 ชนิด คือ  แคโรทีน   เป็นสารสีแดง
หรือสีส้ม และแซนโทฟิลล์  เป็นสารสีเหลืองหรือสีน้ำตาล  แคโรทีนอยด์มีอยู่ในสิ่งมีชีวิตทุกชนิด  ที่สังเคราะห์
ด้วยแสงได้ในพืชชั้นสูงพบว่าสารสีเหล่าสนี้อยู่ในคลอโรพลาสต์
ไฟโคบิลิน  มีในสาหร่ายสีแดงและไซยาโนแบคทีเรีย  ซึ่งไฟโคบิลินประกอบด้วยไฟโคอีรีทรินซึ่งดูดแสงสีเหลืองและเขียว  และไฟโคไซยานินที่ดูดแสงสีเหลืองและสีส้ม
สารเหล่านี้ทำหน้าที่รับพลังงานแสงแล้วส่งต่อให้คลอโรฟิลลล์ เอ ที่เป็นศูนย์กลางปฏิกิริยาของระบบแสง อีกต่อหนึ่ง   กลุ่มสารสีที่ทำหน้าที่รับพลังงานแล้วส่งต่ออีกทีให้คลอโรฟิลล์ เอ  ซึ่งเป็นศูนย์กลางของปฏิกิริยาเรียกว่า
แอนเทนนา
สิ่งที่น่าสงสัยคือ  มีการส่งต่อพลังงานแสงจากโมเลกลุของสารีต่างๆไปยังคลอโรฟิลล์ เอ ที่เป็นศูนย์กลางของปฏิกิริยาของได้ได้อย่างไร
อิเล็กตรอนที่เคลื่อนที่ไปรอบๆ นิวเคลียสของอะตอมของสารสีมีอยู่หลายระดับ   อิเล็กตรอนเหล่านี้สามารถเปลี่ยนแปลงระดับได้ ถ้าได้รับพลังงานที่เหมาะสม  เมื่อโมเลกุลของสารสีดูดพลังงานจากแสง ทำให้อิเล็กตรอน
เคลื่อนที่อยู่ในสภาพปกติ  ถูกกระตุ้นให้มีพลังงานมากขึ้น  อิเล็กตรอนจะเคลื่อนไปอยู่ระดับนอก

อิเล็กตรอนที่ถูกกระตุ้นจะอยู่ในสภาพเร่งเร้า สภาพเช่นนี้ไม่คงตัว    อิเล็กตรอนจะถ่ายทอดพลังงานเร่งเร้าจากโมเลกุลสารสีหนึ่งไปยังโมเลกุลของสารสีอื่นๆต่อไป
อิเล็กตรอนเมื่อถ่ายทอดพลังงานไปแล้วก็จะคืนสู่ระดับปกติ  โมเลกุลของคลอโรฟิลล์เอ  ก็จะได้รับพลังงานโมเลกุลที่ถ่ายทอดมาจากสารสีต่างๆ  รวมทั้งโมเลกลุของคลอโรฟิลล์ เอ  ก็ได้รับพลังงานแสงเองอีกด้วย  เมื่อคลอโรฟิลล์ เอ ที่เป็นศูนย์กลางของปฏิกิริยาได้รับพลังงานที่เหมาะสม จะทำให้อิเล็กตรอนหลุดจากโมเลกุล
อิเล็กตรอนที่หลุดออกมานี้จะมีสารรับอิเล็กตรอน  ที่ค้นพบว่า NADP เป็นสารที่มารับอิเล็กตรอนในภาวะที่มีคลอโรพลาสต์ และกลายเป็น NADPH
ที่เยื่อไทลาคอยด์จะมีกกลุ่มของสารสี เรียกว่าแอนเทนนาแต่ละหน่วยประกอบด้วยสารสีต่างๆ ประมาณ 300 โมเลกุล สารสีอื่นๆ ที่เป็นองค์ประกอบของแอนเทนนาจะได้รับพลังงานแสงแล้วถ่ายทอดไปตาลำดับคลอโรฟิลล์ เอ ที่เป็นศูนย์กลางของปฏิกิริยา
ระบบแสง ประกอบด้วยโปรตีนตัวรับอิเล็กตรอน ตัวถ่ายทอดอิเล็กตรอน และแอนเทนนา ระบบแสงI หรือPSI เป็นระบบแสงที่มีคลอโรฟิลล์ เอ ซึ่งเป็นศูนย์กลางปฏิกิริยารับ พลังงานแสงได้ดีที่สุดที่ความยาวคลื่น 700 นาโนเมตร  จึงเรียกว่า P700 และรับบแสงII หรือ PS II ซึ่งมีคลอโรฟิลล์ เอ ที่เป็นศูนย์กลางปฏิกิริยารับพลังงานแสง
ได้ดีที่สุดที่ความยาวคลื่น 680 นาโนเมตร เรียกปฏิกิริยาแสงนี้ว่า P680
ปฏิกิริยาแสง 
พืชดูดกลืนแสงไว้ในคลอโรพลาสต์ ในขั้นตอนที่เรียกว่า  ปฏิกิริยาแสงให้เป็นพลังงานเคมีที่พืชสามารถนำไปใช้ได้ในรูป ATP และ NADPH
บนเยื่อไทลาคอยด์จะมีระบบแสง I ระบบแสง II และโปรตีนทำหน้าที่รับและถ่ายทอดอิเล็กตรอนอยู่ ซึ่งจำลองการจัดเรียงตัวพลังงานแสงที่สารต่างๆ ดูดกลืนไว้จะทำให้อิเล็กตรอนของสารสีมีระดับพลังงานสูงขึ้น  และสามารถ่ายทอด
ไปได้หลายรูปแบบ  สารสีในแอนเทนนาจะมีการท่ายทอดพลังงานที่ดูดกลืนไว้ จากสารสีโมเลกุลหนึ่งไปยังสารสีอีกโมเลกุลหนึ่ง จนกระทั่งโมเลกุลของคลอดรฟิลล์ เอ  ที่เป็นศูนย์กลางของระบบปฏิกิริยาแสง พลังงานดังกล่าวจะกระตุ้นให้อิเล็กตรอนของคลอโรฟิลล์ เอ มีพลังงานสูงขึ้น  และถ่ายทอดอิเล็กตรอนไปยังตัวรับอิเล็กตรอน
เป็นการเปลี่ยนปลังงานสงให้มาอยู่ในรูปของพลังงานเคมี  นอกจากนี้พลังที่ถูกดูดกลืนไว้อาจเปลี่ยนมาอยู่ในรูปของพลังงานความร้อน  การถ่ายทอดอิเล็กตรอนเกิดได้ 2 ลักษณะ  คือการถ่ายทอดอิเล็กตรอนแบบไม่เป็นวัฏจักรและการถ่ายทออิเล็กตรอนแบบเป็นวัฏจักร

ถ่ายทอดอิเล็กตรอนแบบไม่เป็นวัฏจักร

16

พลังงานสงที่สสารสีรับไว้ถูกส่งผ่านไปยังปฏิกิริยาของระบบแสง และทำให้โมเลกุลของคลอโรฟิลล์ เอ ที่ระบบแสง I และระบบแสง II   ถูกระตุ้นจึงปล่อยอิเล็กตรอนให้กับโมเลกุลของสารที่เป็นตัวรับอิเล็กตรอนต่อไปอิเล็กตรอนที่หลุดออกไปจากคลอโรฟิลล์ เอ ในระบบแสง I จะไม่ย้อนกลับสู้ระบบแสงI อีกครั้ง เพราะมีNADมารับอิเล็กตรอนกลายเป็น NADPH สำหรับคลอดรฟิลล์ เอ ในระบบแสง II สุญเสียอิเล็กตรอนไปมีผลให้สามารถ
ดึงอิเล็กตรอนของน้ำออกมาแทนที่ ซึ่งทำให้โมเลกุลของนำแยกสลายเป็นออกซิเจนและโปรตอน
อิเล็กตรอนที่ถูกถ่ายทอดในลำดับต่างๆ ที่กล่าวมาข้างต้นทำให้เกิดการสะสมโปรตอนในลูเมนจนเกิดความแตกต่างของระดับโปรตอนระหว่างสโตรมากับลูเมน  โปรตอนในลูเมนจะถูกส่งผ่านไปยังสโตรมาโดยการทำงานของATP ขึ้นในสโตรมา  และมีการปล่อยโปรตอนจากลูเมนสู่สโตรมา

การถ่ายทอดอิเล็กตรอนแบบเป็นวัฏจักร
เป็นการถ่ายทอดอิเล็กตรอนที่เกิดขึ้น เมื่อระบบแสงIได้รับพลังงานแสง สารสีในระบบแสง I จะรับพลังงานแสงถ่ายทอดพลังงานไปยังคลอโรฟิลล์ เอ ที่เป็นศูนย์กลางของปฏิกิริยา ทำให้อิเล็กตรอนของคลโรฟิลล์ เอมีพลังงานสูงขึ้นจึงหลุดออกมาซึ่งจะมีตัวรับอิเล็กตรอนแล้วถ่ายทอดออกมายังระบบไซโทโครมคอมเพล็กซ์  จากนั้นจะส่งผ่านตัวนำอิเล็กตรอนต่างๆ อิเล็กตรอนก็จะกลับมายังคลอโรฟิลล์ ที่เป็นศูนย์กลาง
ของปฏิกิริยา ของระบบแสง I อีกครั้งหนึ่ง ในการเคลื่อนย้ายอิเล็กตรอนครั้งนี้จะทำให้โปรตอนเคลื่อนย้ายจากสโตรมาเข้าสู่ลูเมนเป็นผลทำให้เกิดความแตกต่างความเข้มข้นของโปรตอนระหว่างลูเมนกับสโตรมาและเมื่อสะสมมากขึ้น เป็นแรงผลักดันให้เกิดการสังเคราะห์ ATP โดยไม่มี NADPH และออกซิเจน เกิดขึ้น
ปฏิกิริยาตรึงคาร์บอนไดออกไซด์

18

การสังเคราะห์แสงของพืชมีกระบวนการตรึงคาร์บอนไดออกไซด์เพื่อสร้างสารประกอบคาร์โบไฮเดรต
จากการทดลองของคัลวินและคณะสันนิษฐานว่า  น่าจะมีสารประกอบคาร์บอน 2 อะตอม  ซึ่งเมื่อรวมตัวกับคาร์บอนไดออกไซด์ จะได้ PGA แต่หลังจากการค้นหาไม่ค้นพบสารประกอบที่มีคาร์บอน 2 อะตอมอยู่เลย  เขาจึงตรวจหาสารประกอบใหม่ที่จะมีมารวมกับ CO เป็น PGA จากการตรวจสอบพบสารประกอบ
จำพวกน้ำตาลที่มีคาร์บอน 5 อะตอม  คือ ไรบูโลสบิสฟิสเฟต  เรียกย่อๆว่า RuBP เมื่อรวมตัวกับคาร์บอนไดออกไซด์เกิดเป็นสารประกอบตัวใหม่ที่มีคาร์บอน 6 อะตอม  แต่สารนี้ไม่อยู่ตัว จะสลายกลายเป็นสารประกอบที่มีคาร์บอน 3 อะตอม  คือ PGA จำนวน 2 โมเลกุล
นอกจากนี้คัลวินและคณะ ได้พบปฏิกิริยาเหล่านี้ เกิดหลายขั้นตอนต่อเนืองไปเป็นวัฏจักรในปัจจุบันเรียกวัฏจักรของปฏิกิริยานี้ว่า  วัฏจักรคัลวิน
การตรึงคาร์บอนไดออกไซด์นี้เป็นกระบวนการที่พืชนำพลังงานเคมีที่ได้จากปฏิกิริยาแสงในรูปATP และADPH มาใช้ในการสร้างสารอินทรีย์  คาร์บอนไดออกไซด์จะถูกรีดิวส์เป็นน้ำตาลไตรโอสฟอสเฟตในวัฏจักรคัลวิน  วัฏจักรคัลวินเป็นปฏิกิริยาที่เกิดขึ้นในสโตรมาของคลอโรพลาสต์ ประกอบ 3 ขั้นตอนใหญ่ คือ คาร์บอกซิเลชัน  รีดักชันและ รีเจเนอเรชัน
ปฏิกิริยาขั้นที่ 1 คาร์บอกซิเลชัน  เป็นปฏิกิริยาตรึงคาร์บอนไดออกไซด์  คาร์บอนไดออกไซด์จะเข้าสู่วัฏจักรคัลวินโดยการทำปฏิกิริยากับ RuBP มีเอนไซม์ไรบูโลส บิสฟอสเฟต คร์บอกซิเลส ออกจีเจเนส  เรียกย่อๆว่า รูบิสโก เป็นคะตะลิสต์  เมื่อ RuBP ซึ่งเป็นสารที่มีคาร์บอน 5 อะตอม  เข้ารวมกับคาร์ไดออกไซดได้สารประกอบใหม่ที่มีคาร์บอน 6 อะตอม  เป็นสารที่ไม่คงตัวและจะเปลี่ยนเป็นสารประกอบ ฟอสโฟกลีเซอเรต  มีคาร์บอน 3 อะตอม จำนวน 2 โมเลกุล  ซึ่งถือได้ว่าเป็นสารประกอบที่มีคาร์บอนตัวแรกที่คงตัวในวัฏจักรคัลวิน
ปฏิกิริยาขั้นที่ 2 รีดักชัน ในขั้นตอนนี้แต่ละโมเลกุลของ PGA จะรับหมู่ฟอสเฟตจาก ATP กลายเป็น 1,3 บิสฟอสโฟกลีเซอเรต ซึ่งรับอิเล็กตรอนจาก NADPH และถูกเปลี่ยนเป็น กลีเซอรัลดีไฮด์ 3-ฟอสเฟต  เรียกย่อๆว่าG3P หรือ PGAL เป็นน้ำตาลคาร์บอน 3 อะตอม
ปฏิกิริยาขั้นที่ 3 รีเจเนอเรชัน  เป็นขั้นตอนที่จะสร้าง RuBP ขึ้นมาใหม่ เพื่อกลับไปรับคาร์บอนไดออกไซด์อีกครั้งหนึ่ง  ในการสร้างRuBP ขึ้นมาใหม่  เพื่อกลับไปรับคาร์บอนไดออกไซด์อีกครั้งหนึ่ง ในการสร้าง RuBP ซึ่งมีคาร์บอน 5 อะตอมซึ่งต้องอาศัย G3P ซึ่งเป็นสารที่มีคาร์บอน 3 อะตอม จึงเปลี่ยนไปเป็น RuBP และขั้นตอนนี้
ต้องอาศัยพลังงานจาก ATP จากปฏิกิริยาแสง ส่วน G3P บางโมเลกุลถูกนำไปสร้างกลูโคส และสารประกอบอินทรีย์อื่นๆ
พืชที่สังเคราะห์ด้วยแสงมีสารประกอบคงตัวชนิดแรกที่ได้จากปฏิกิริยาการตรึงคาร์บอนไดออกไซด์เป็นสารที่มีคาร์บอน 3 อะตอม เรียกว่าพืช C3
น้ำตาลที่ได้จากวัฏจักรคัลวินถูกนำไปสร้างเป็นน้ำตาลไดแซ็กคาไรด์ เช่น ซูโครส  เพื่อลำเลียงไปสู่ส่วนต่างๆที่พืชต้องการจะใช้ต่อไป  หรืออาจจะถูกเก็บสะสมไว้ในรูปของเม็ดแป้งในคลอโรพลาสต์หรือนำไปใช้ในกระบวนการ
อื่นๆภายในเซลล์ เช่น กระบวนการสลายอาหาร การสร้างสารอินทรีย์อื่นๆ  เช่น กรดไขมัน กรดอะมิโน
ปฏิกิริยาตรึงคาร์บอนไดออกไซด์เป็นปฏิกิริยาที่ไม่จำเป็นต้องใช้แสงจริงหรือไม่  ในอดีตเรียกว่าปฏิกิริยาที่ไม่ใช้แสง เราคิดว่าไม่ต้องใช้แสง  แต่ปัจจุบันพบว่าแสงมีบทบาทที่สำคัญ  ซึ่งการตรึงคาร์บอนไดออกไซด์จะเริ่มต้นหลังจากพืชได้รับแสงช่วงหนึ่ง   อัตราการสังเคราะห์แสงจะเร่อมตามระยะเวลาที่เพิ่มขึ้น  เนืองจากแสง
กระตุ้นการทำงานของเอนไซม์หลายชนิดที่ใช้ในวัฏจักรคัลวิน  เช่น  เอนไซม์รูบิสโก  นอกจากนี้แสงยังมีอิทธิพลต่อการลำเลียงสารประกอบคาร์บอน 3 อะตอม ออกจากคลอโรพลาสต์  และมีอิทธิพลต่อการเคลื่อนที่ของไอออนต่างๆ
สรุปโดยย่อการสังเคราะห์ด้วยแสงของพืชประกอบด้วย 2 ส่วนใหญ่ ได้แก่ กระบวนการเปลี่ยนพลังงานแสงขให้เป็นพลังงานแคมีโดยการสร้าง ATPและNADPH ด้วยปฏิกิริยา จากนั้นจะนำ ATPและ NADPH มาใช้ใน
ปฏิกิริยาการตรึงคาร์บอนไดออกไซด์เพื่อสร้างสารประกอบคาร์โบไฮเดรต

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s